CS250B: Modern Computer Systems

Privileged Operations and Virtualization

(1
>

Sang-Woo Jun

Historical Uses of Virtualization

J Application virtualization

o Improves portability by running on virtual environment
o JVM, .net, ...

J System virtualization (topic for today)

o Emulates full system hardware in software to create one or more virtual machine
instances on a single hardware instance

o Security/isolation, manageability, OS development, efficient use of resources
(important topic!)

o IBM VM/370, vmware, gemu, Linux KVM, ...
d In the middle: OS-level virtualization (Docker, ...)

IBM VM/370 Example

One of the first hardware-assisted virtualization instances

Specialized

Conversatio VM Mainstream
Virtual nal Monitor 0S (MVS, Another
: System Subsystem DOS/VSE copy of VM
maChlnes y (RSCS, RACF, py

etc.)

(CMS) GCS)

Hypervisor Control Program (CP)

Hardware System/370

Oliver.Obi “3D Rendering of computer center with IBM System/370-145 and IBM 2401 tape drives”
Zhiming Shen, “Virtualization Technology,” CS 6410: Advanced Systems Fall 2016, Cornell University

Virtualization in the Cloud

d Virtualization is a fundamental piece of elastic clouds

J Reduces resource fragmentation, helps load balancing

o For example, in a 8-core physical machine, four 2-core virtual machines can be
spawned to efficiently use its resources

o Without virtual machines, clouds will have to extremely accurately predict
customer use cases, or suffer resource waste due to fragmentation

o Reduce resource fragmentation, enabling efficient resource utilization for elastic
resource allocation - Economy of scale that makes clouds viable

d Conveniently spawn and kill instances

d We will now focus only on system virtualization

But first and foremost, virtualization should be fast. Otherwise, it’s pointless for the cloud

How Does Virtualization Work?
The Naive Way

J Write a software interpreter

o A piece of software completely implements the CPU ISA and surrounding
hardware

o e.g., Bochs system emulator
J Pros:

o Completely isolated, user-space implementation
o Can emulate guest systems unrelated to host
o Bochs is very useful for operating system development

J Cons: Very very slow!
o Typically 100x slower

Before We Go On —
Protected Mode Recap

(d Modern x86 CPUs have “real mode” and “protected mode”

O

On boot, BIOS/UEFI loads bootloader from storage into memory, and CPU starts
executing it in real mode

Real mode has 1 MB addressable memory, no virtual memory or memory
protection

The bootloader loads the kernel and executes it, which populates the virtual
memory data structures for the CPU, among other bookkeeping, and switches
forever into protected mode by setting a control register Also. A20 line... ®

From here, all memory accesses are through virtual memory (via TLB and virtual
memory table)

Tangent: The A20 Physical Pin?!

LPT_PCH_M_EDS

AU 0400
REW =5
TP M=
Change RH194 to Gohm jump
RH141 1 2 10K 0402 S
STRLIGPIOLE2 . . OHAVS
TP14 ANIO GATERZD PCH ; 1 W@Eé 2 |GATERZD 44
Y1 0 0402 5%
PECI —ﬁ - =
&PIo reing pATE KBRSTH < KBRST# 44
PROCPWRGD [F2 [>H CPUPWRGD &
THRMTRI P DJ:"-‘M"JFCH IHHMIHII—-‘T-:' R 1 RH14 392‘} = IE{%IHHMIHIF-; H THRMTRIPE &
A4 CRU PLTRSTH PCH THEMTRIP# R 23
PLTRST PROCH — { =CPU_PLTRSTE &
M10
WSS N1O {>

At least still existent on some Haswell (~2015) processors!
Skylate doesn’t have it, it seems

Ring 2 Least privileged

Before We Go On —
Protection Rings Recap

(d Modern CPUs assign different levels of access per
process/thread
o A process’s ring determines which subset of instructions it can execute

o Lower levels are more privileged, can execute all instructions that upper
rings can

o x86 CPUs have four rings, but most OSs use only two (0 : “Supervisor
mode”, and 3 : “User mode”)
d “Privileged Instructions” can only execute while in ring O (Kernel)
o Managing virtual memory mappings, modify control registers, etc
o Attempting one in user mode results in “general protection fault” exception
 GPF can be for many other reasons as well...

Ring 1

Ring 0
Kernel

Device drivers

Most privileged

Device drivers

Applications

Source: Wikipedia

Before We Go On — Exceptions Recap

J OS must supply the CPU with exception handlers
o On x86, a table (“Interrupt Descriptor Table”) of pointers to each handler

o On an exception (e.g., GPF), execution jumps to corresponding handler with
information about where it happened

o Handler runsin ring 0, and can do what it wants to handle or not handle the
exception

Back To Virtualization — Native Execution

J If virtual and host ISA is identical, most instructions can be run as-is

d Virtual Machine Manager creates a virtual system environment,
(memory, display, etc) in userspace, and tries to execute OS code as if it is
user software

o Privileged instruction attempts are caught via exceptions, and handled by VMM to
emulate what should have happened

o The VMM must have kernelspace access! — Typically what is called Hypervisor

1 Pros: Very high performance — Almost no overhead for computation-
bound applications

Some Issues With Native Execution

J Some privileged instructions don’t generate exceptions in user mode
o popf (Pop flags) fails silently
J Guest virtual memory is cumbersome

o Another layer of translation: Guest virtual memory -> Guest physical memory

(host virtual memory) via virtual page table -> Host physical memory via physical
page table

Binary Translation

1 Typically used as performance optimization for cross-platform
virtualization

d All software that is to run on a VM is translated during load to work
better with the VM
o Translated software (even OSs) can run just like normal software
o Software for different ISA is translated to host ISA
o Example: JIVM JIT

1 Special instructions are changed to point to handlers in VM

o Interrupts, privileged instructions, etc now call handlers — Solves the silent failure
problem for native execution

o Jump targets are overwritten

Binary Translation

d Issue: Indirect jumps
o Jump targets depending on runtime variable is difficult to predict
o Re-translating every time has a high performance overhead

o We could create an index of the addresses of all original instructions and their
translations — Intractable overhead!

o Typically a balance of the two
o Not an issue with native execution

d Issue: Self-modifying code
o Sometimes need to check for modifications and fall back to software interpreter

Shadow Page Table

1 In a naively virtualized system, there are two page tables for the same
guest memory access

o Page table in the virtual CPU, pointing to virtual physical memory (host virtual
memory)

o Page table in the host CPU, pointing to host physical memory

o During virtual virtual memory access, virtual CPU needs to do translation, harming
performance

J For performance, a VMM can store guest memory mappings directly in
host page table (guest virtual memory to host physical memory)

o Guest MMU does no translation, and simply depends on host MMU to do the right
thing

Shadow Page Table

(J Guest OS page table is write-protected in host memory
o Host OS intercepts page table updates and populates a “shadow” table

 Virtual CPU ignores its page table, and forwards requests to host
o Single layer of translation, using host’s physical virtual memory hardware

o Shadow table not visible to guest! Guest Guest . .
CIEH B Virtual Physical Memo
table AS AS Y
Guest A 2 [||

\//
>
-

6| <

Shadow page

table

Guest B 5

Zhiming Shen, “Virtualization Technology,” CS 6410: Advanced Systems Fall 2016, Cornell University

The Modern Way —
Hardware-Assisted Virtualization

(d Newer CPUs have hardware support for virtualization, which renders
many of the above unnecessary
o Intel VT-x, AMD-V

 Introduces the concept of ring -1, and a few more instructions

o Hypervisor boots into ring -1, and uses ring -1 instruction (VMLAUNCH, etc) to
spawn/manage/terminate VMs

o VMs startin ring 0, thinking it has full control of CPU

d Interrupts are delivered to hypervisor for it to manage
o Timer interrupts, etc used to bring execution back to hypervisor

The Modern Way —
Hardware-Assisted Virtualization

d Virtual memory management also moved to ring -1
o Second Level Address Translation (SLAT), or “nested paging”
o Intel Extended page table (EBT), AMD Stage-2 MMU

J Now virtual memory translation can be nested in hardware

o Hardware performs the translation from the guest physical address to host virtual
address

o Separate hardware registers for specifying guest and VMM VM location

Virtualizing Peripherals

J Network, storage, etc,...

J Typically a small selection of generic virtual devices are provided to the
virtual machine

o Only the hypervisor knows of the actual hardware

o Hypervisor performs scheduling as it sees fit

Jd When raw access must be given to a guest, the access is exclusive
o Class of devices a generic catalog was not provided for
o hypervisor acts as a raw bridge

J Some modern peripherals come with their own virtualization support
o Per-VM gqueues and contexts

Paravirtualization

J Guest OS is modified to communicate with the hypervisor

o Guest OS sees physical memory, and must work with hypervisor to cooperatively
manage memory

o Privileged instructions are changed to requests to hypervisor (hypercalls)

1 Can greatly simplify hypervisor, improve performance

	Slide 1: CS250B: Modern Computer Systems Privileged Operations and Virtualization
	Slide 2: Historical Uses of Virtualization
	Slide 3: IBM VM/370 Example
	Slide 4: Virtualization in the Cloud
	Slide 5: How Does Virtualization Work? The Naïve Way
	Slide 6: Before We Go On – Protected Mode Recap
	Slide 7: Tangent: The A20 Physical Pin?!
	Slide 8: Before We Go On – Protection Rings Recap
	Slide 9: Before We Go On – Exceptions Recap
	Slide 10: Back To Virtualization – Native Execution
	Slide 11: Some Issues With Native Execution
	Slide 12: Binary Translation
	Slide 13: Binary Translation
	Slide 14: Shadow Page Table
	Slide 15: Shadow Page Table
	Slide 16: The Modern Way – Hardware-Assisted Virtualization
	Slide 17: The Modern Way – Hardware-Assisted Virtualization
	Slide 18: Virtualizing Peripherals
	Slide 19: Paravirtualization

