
CS250B: Modern Computer Systems

Privileged Operations and Virtualization

Sang-Woo Jun

Historical Uses of Virtualization

❑ Application virtualization
o Improves portability by running on virtual environment

o JVM, .net, …

❑ System virtualization (topic for today)
o Emulates full system hardware in software to create one or more virtual machine

instances on a single hardware instance

o Security/isolation, manageability, OS development, efficient use of resources
(important topic!)

o IBM VM/370, vmware, qemu, Linux KVM, …

❑ In the middle: OS-level virtualization (Docker, …)

IBM VM/370 Example

Zhiming Shen, “Virtualization Technology,” CS 6410: Advanced Systems Fall 2016, Cornell University

One of the first hardware-assisted virtualization instances

Oliver.Obi “3D Rendering of computer center with IBM System/370-145 and IBM 2401 tape drives”

Virtualization in the Cloud

❑ Virtualization is a fundamental piece of elastic clouds

❑ Reduces resource fragmentation, helps load balancing
o For example, in a 8-core physical machine, four 2-core virtual machines can be

spawned to efficiently use its resources

o Without virtual machines, clouds will have to extremely accurately predict
customer use cases, or suffer resource waste due to fragmentation

o Reduce resource fragmentation, enabling efficient resource utilization for elastic
resource allocation → Economy of scale that makes clouds viable

❑ Conveniently spawn and kill instances

❑ We will now focus only on system virtualization

But first and foremost, virtualization should be fast. Otherwise, it’s pointless for the cloud

How Does Virtualization Work?
The Naïve Way

❑ Write a software interpreter
o A piece of software completely implements the CPU ISA and surrounding

hardware

o e.g., Bochs system emulator

❑ Pros:
o Completely isolated, user-space implementation

o Can emulate guest systems unrelated to host

o Bochs is very useful for operating system development

❑ Cons: Very very slow!
o Typically 100x slower

Bochs logo

Before We Go On –
Protected Mode Recap

❑ Modern x86 CPUs have “real mode” and “protected mode”
o On boot, BIOS/UEFI loads bootloader from storage into memory, and CPU starts

executing it in real mode

o Real mode has 1 MB addressable memory, no virtual memory or memory
protection

o The bootloader loads the kernel and executes it, which populates the virtual
memory data structures for the CPU, among other bookkeeping, and switches
forever into protected mode by setting a control register

o From here, all memory accesses are through virtual memory (via TLB and virtual
memory table)

Also, A20 line… 

Tangent: The A20 Physical Pin?!

At least still existent on some Haswell (~2015) processors!
Skylate doesn’t have it, it seems

Before We Go On –
Protection Rings Recap

❑ Modern CPUs assign different levels of access per
process/thread
o A process‘s ring determines which subset of instructions it can execute

o Lower levels are more privileged, can execute all instructions that upper
rings can

o x86 CPUs have four rings, but most OSs use only two (0 : “Supervisor
mode”, and 3 : “User mode”)

Source: Wikipedia

❑ “Privileged Instructions” can only execute while in ring 0 (Kernel)
o Managing virtual memory mappings, modify control registers, etc

o Attempting one in user mode results in “general protection fault” exception

• GPF can be for many other reasons as well…

Before We Go On – Exceptions Recap

❑ OS must supply the CPU with exception handlers
o On x86, a table (“Interrupt Descriptor Table”) of pointers to each handler

o On an exception (e.g., GPF), execution jumps to corresponding handler with
information about where it happened

o Handler runs in ring 0, and can do what it wants to handle or not handle the
exception

Back To Virtualization – Native Execution

❑ If virtual and host ISA is identical, most instructions can be run as-is

❑ Virtual Machine Manager creates a virtual system environment,
(memory, display, etc) in userspace, and tries to execute OS code as if it is
user software
o Privileged instruction attempts are caught via exceptions, and handled by VMM to

emulate what should have happened

o The VMM must have kernelspace access! – Typically what is called Hypervisor

❑ Pros: Very high performance – Almost no overhead for computation-
bound applications

Some Issues With Native Execution

❑ Some privileged instructions don’t generate exceptions in user mode
o popf (Pop flags) fails silently

❑ Guest virtual memory is cumbersome
o Another layer of translation: Guest virtual memory -> Guest physical memory

(host virtual memory) via virtual page table -> Host physical memory via physical
page table

Binary Translation

❑ Typically used as performance optimization for cross-platform
virtualization

❑ All software that is to run on a VM is translated during load to work
better with the VM
o Translated software (even OSs) can run just like normal software

o Software for different ISA is translated to host ISA

o Example: JVM JIT

❑ Special instructions are changed to point to handlers in VM
o Interrupts, privileged instructions, etc now call handlers – Solves the silent failure

problem for native execution

o Jump targets are overwritten

Binary Translation

❑ Issue: Indirect jumps
o Jump targets depending on runtime variable is difficult to predict

o Re-translating every time has a high performance overhead

o We could create an index of the addresses of all original instructions and their
translations – Intractable overhead!

o Typically a balance of the two

o Not an issue with native execution

❑ Issue: Self-modifying code
o Sometimes need to check for modifications and fall back to software interpreter

Shadow Page Table

❑ In a naively virtualized system, there are two page tables for the same
guest memory access
o Page table in the virtual CPU, pointing to virtual physical memory (host virtual

memory)

o Page table in the host CPU, pointing to host physical memory

o During virtual virtual memory access, virtual CPU needs to do translation, harming
performance

❑ For performance, a VMM can store guest memory mappings directly in
host page table (guest virtual memory to host physical memory)
o Guest MMU does no translation, and simply depends on host MMU to do the right

thing

Shadow Page Table

❑ Guest OS page table is write-protected in host memory
o Host OS intercepts page table updates and populates a “shadow” table

❑ Virtual CPU ignores its page table, and forwards requests to host
o Single layer of translation, using host’s physical virtual memory hardware

o Shadow table not visible to guest!

Zhiming Shen, “Virtualization Technology,” CS 6410: Advanced Systems Fall 2016, Cornell University

The Modern Way –
Hardware-Assisted Virtualization

❑ Newer CPUs have hardware support for virtualization, which renders
many of the above unnecessary
o Intel VT-x, AMD-V

❑ Introduces the concept of ring -1, and a few more instructions
o Hypervisor boots into ring -1, and uses ring -1 instruction (VMLAUNCH, etc) to

spawn/manage/terminate VMs

o VMs start in ring 0, thinking it has full control of CPU

❑ Interrupts are delivered to hypervisor for it to manage
o Timer interrupts, etc used to bring execution back to hypervisor

The Modern Way –
Hardware-Assisted Virtualization

❑ Virtual memory management also moved to ring -1
o Second Level Address Translation (SLAT), or “nested paging”

o Intel Extended page table (EBT), AMD Stage-2 MMU

❑ Now virtual memory translation can be nested in hardware
o Hardware performs the translation from the guest physical address to host virtual

address

o Separate hardware registers for specifying guest and VMM VM location

Virtualizing Peripherals

❑ Network, storage, etc,…

❑ Typically a small selection of generic virtual devices are provided to the
virtual machine
o Only the hypervisor knows of the actual hardware

o Hypervisor performs scheduling as it sees fit

❑ When raw access must be given to a guest, the access is exclusive
o Class of devices a generic catalog was not provided for

o hypervisor acts as a raw bridge

❑ Some modern peripherals come with their own virtualization support
o Per-VM queues and contexts

Paravirtualization

❑ Guest OS is modified to communicate with the hypervisor
o Guest OS sees physical memory, and must work with hypervisor to cooperatively

manage memory

o Privileged instructions are changed to requests to hypervisor (hypercalls)

❑ Can greatly simplify hypervisor, improve performance

	Slide 1: CS250B: Modern Computer Systems Privileged Operations and Virtualization
	Slide 2: Historical Uses of Virtualization
	Slide 3: IBM VM/370 Example
	Slide 4: Virtualization in the Cloud
	Slide 5: How Does Virtualization Work? The Naïve Way
	Slide 6: Before We Go On – Protected Mode Recap
	Slide 7: Tangent: The A20 Physical Pin?!
	Slide 8: Before We Go On – Protection Rings Recap
	Slide 9: Before We Go On – Exceptions Recap
	Slide 10: Back To Virtualization – Native Execution
	Slide 11: Some Issues With Native Execution
	Slide 12: Binary Translation
	Slide 13: Binary Translation
	Slide 14: Shadow Page Table
	Slide 15: Shadow Page Table
	Slide 16: The Modern Way – Hardware-Assisted Virtualization
	Slide 17: The Modern Way – Hardware-Assisted Virtualization
	Slide 18: Virtualizing Peripherals
	Slide 19: Paravirtualization

